Prove that (cosec - cos)2 = 1 - cos/1 + cos | Bzziii.com
Prove that
`(cosec\theta-cos\theta)^2 = \frac{1 - cos\theta}{1 + cos\theta}`
`(cosec\theta-cos\theta)^2 = \frac{1 - cos\theta}{1 + cos\theta}`
LHS = `(cosec\theta-cos\theta)^2 = \frac{1 - cos\theta}{1 + cos\theta}`
`(cosec\theta-cos\theta)^2` = `(\frac{1}{sin\theta} - \frac{cos\theta}{sin\theta})^2`
`\frac{(1-cos\theta)^2}{sin^2\theta} = \frac{(1-cos\theta)^2}{1-cos\theta^2}`
`\frac{(1-cos\theta)^2}{(1-cos\theta^2)(1+cos\theta^2)} = \frac{1-cos\theta^2}{1+cos\theta^2}` = RHS
Comments
Post a Comment