D and E are Points On the Sides CA and CB Respectively of a Triangle of a Traingal ABC Right Angled at C. Prove that AE^2+BD^2=AB^2+DE^2 | Bzziii.com
D and E are points on the sides CA and CB respectively of a triangle of a traingal ABC right angled at C. Prove that `AE^2+BD^2`=`AB^2+DE^2`
Given, Triangle ABC, right angled at C
Two Points D and E are on the sides CA and CB
To Prove that, `"AE"_2` + `"BD"_2` = `"AB"_2` + `"DE"_2`
Let us join the points D with E and B and P with A
Using Pythagoras theorem
`"(Hypotenuse)"_2` = `"(Height)"_2` +`"(Base)"_2`
Since, R.H.S = L.H.S
Two Points D and E are on the sides CA and CB
To Prove that, `"AE"_2` + `"BD"_2` = `"AB"_2` + `"DE"_2`
Let us join the points D with E and B and P with A
Using Pythagoras theorem
`"(Hypotenuse)"_2` = `"(Height)"_2` +`"(Base)"_2`
Here, ACE is a right angle triangle
`"AE"_2` = `"AC"_2` +`"CE"_2` .....(1)
In right angle triangle DCB
`"BD"_2` = `"DC"_2` +`"BC"_2` .....(2)
In right angle triangle ABC
`"AB"_2` = `"AC"_2` +`"BC"_2` .....(3)
`"AE"_2` = `"AC"_2` +`"CE"_2` .....(1)
In right angle triangle DCB
`"BD"_2` = `"DC"_2` +`"BC"_2` .....(2)
In right angle triangle ABC
`"AB"_2` = `"AC"_2` +`"BC"_2` .....(3)
In right angle triangle DCE
`"DE"_2` = `"DC"_2` +`"CE"_2` .....(4)
`"DE"_2` = `"DC"_2` +`"CE"_2` .....(4)
L.H.S `"AE"_2` + `"BD"_2` = `"(AC"_2` + `"CE"_2)` + `"(DC"_2` + `"BC"_2)` = `"AC"_2` + `"CE"_2` + `"DC"_2` + `"BC"_2` |
R.H.S `"AB"_2` + `"DE"_2` = `"(AC"_2` + `"BC"_2)` + `"(DC"_2` + `"CE"_2)` = `"AC"_2` + `"CE"_2` + `"DC"_2` + `"BC"_2` |
Hence, it is Proved that `AE^2+BD^2`=`AB^2+DE^2`
Comments
Post a Comment