Find the area of the sector of a circle with radius 4 cm and angle `30^0`. Also, find the area of the corresponding major sector. (`\pi`= 3.14)
Here,
Radius (r) = 4 cm
`\theta` = `30^0`
Now,
Area of sector = `\frac{\theta}{360} \times \pi r^2`
= `30/360` ` \times` 3.14 ` \times` `(4)^2`
= `1/12` ` \times` 3.14 ` \times` 4 ` \times` 4
= `1/3` ` \times` 3.14 ` \times` 4
= `12.56/3` `"cm"^2`
= 4.19 `"cm"^2`
Radius (r) = 4 cm
`\theta` = `30^0`
Now,
Area of sector = `\frac{\theta}{360} \times \pi r^2`
= `30/360` ` \times` 3.14 ` \times` `(4)^2`
= `1/12` ` \times` 3.14 ` \times` 4 ` \times` 4
= `1/3` ` \times` 3.14 ` \times` 4
= `12.56/3` `"cm"^2`
= 4.19 `"cm"^2`
Now, Area of major sector
= `\frac{(360 - \theta)}{360} \times \pi r^2`
= `\frac{(360 - 30)}{360} \times 3.14 \times 4^2`
= `\frac{(330)}{360} \times` 3.14 `\times` 4 `\times` 4
= `11/12` `\times` 3.14 `\times` 4 `\times` 4
= 46.05 `"cm"^2`
= `\frac{(360 - \theta)}{360} \times \pi r^2`
= `\frac{(360 - 30)}{360} \times 3.14 \times 4^2`
= `\frac{(330)}{360} \times` 3.14 `\times` 4 `\times` 4
= `11/12` `\times` 3.14 `\times` 4 `\times` 4
= 46.05 `"cm"^2`
0 Comments