The Median of the Following Data is 525. Find the Values of x and y, If the Total Frequency is 100. | Bzziii
The median of the following data is 525. Find the values of `x` and `y`, if the total frequency is 100.
Class interval | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 | 800-900 | 900-1000 |
Frequency | 2 | 5 | x | 12 | 17 | 20 | y | 9 | 7 | 4 |
Median = 525
Median Class = 500 – 600
= 76 + x + y = 100
Median Class = 500 – 600
Class interval | Frequency (f) | Cumulative frequency (cf) |
0-100 | 2 | 2 |
100-200 | 5 | 7 |
200-300 | x | 7 + x |
300-400 | 12 | 19 + x |
400-500 | 17 | 36 + x |
500-600 | 20 | 56 + x |
600-700 | y | 56 + x + y |
700-800 | 9 | 65 + x + y |
800-900 | 7 | 72 + x + y |
900-1000 | 4 | 76 + x + y |
N = `\sum` fi = 100 |
= 76 + x + y = 100
= x + y = 24 ….(i)
Median = `1+\frac{\frac{n}{2}-F}{f}\times h`
Since, l=500,h=100,f=20,F=36+x and N=100
Therefore, putting the value in the Median formula, we get;
x = 9
y = 24 – x (from eq.i)
y = 24 – 9 = 15
Therefore, the value of x = 9 and y = 15.
Median = `1+\frac{\frac{n}{2}-F}{f}\times h`
Since, l=500,h=100,f=20,F=36+x and N=100
Therefore, putting the value in the Median formula, we get;
x = 9
y = 24 – x (from eq.i)
y = 24 – 9 = 15
Therefore, the value of x = 9 and y = 15.
Comments
Post a Comment