The Lengths of the Diagonals of a Rhombus Are 24cm and 32cm, Then the Length of the Altitude of the Rhombus Is

The lengths of the diagonals of a rhombus are 24cm and 32cm, then the length of the altitude of the rhombus is

(a) 12cm 

(b) 12.8cm 

(c) 19 cm

(d) 19.2cm




(d) 19.2cm

Explanation:


Let, ABCD be the given rhombus

Where, 
 
AC = 32cm  
 
Bd = 24 cm

First, let's finding the side of rhombus

We Know that,

Diagonals of rhombus are perpendicular bisector of each other 

∴ AC 丄 BD

so, 

OB = `"BD"/2`
=  `"24"/2` = 12 cm

OA = `"AC"/2`

=  `"32"/2` = 16 cm

By Pythagoras Theorem,

`"AB"^{2}` = `("OA")^{2}` + `("OB")^{2}`

`"AB"^{2}` = `("16")^{2}` + `("12")^{2}`

`"AB"^{2}` =   256 + 144

`"AB"^{2}` =   400

`"AB"^{2}` = `("20")^{2}`

Now, To find altitude,

we use the help of Area

Area using Diagonals

Area of Rhombus = `frac{1}{2}` x Diagonal 1 x Diagonal 2
                              
=  `frac{1}{2}` x 24 x 32
                              
= 384 `"cm"^{2}`

Area using Base and Height

Area of Rhombus = Base x Height

= 12 x 32 = 20 x Height

= 12 x 32 x `frac{1}{20}` = Height

= 19.2 = Height







Post a Comment

0 Comments