(a) -1, 1
(b) 0,1
(c)1, 2
(d) -1,-1
![]()
(c)1, 2
Explanation:
= 1+ `sin^{2}α` = 3 sinα cos α
= `sin^{2}α` + `cos^{2}α` + `sin^{2}α` = 3 sinα cos α
= `2 sin^{2}α` - 3sinα cos α + `cos^{2}α` = 0
= (2sinα -cos α)( sinα- cosα) =0
∴ cotα = 2 or cotα = 1
(b) 0,1
(c)1, 2
(d) -1,-1
(c)1, 2
Explanation:
= 1+ `sin^{2}α` = 3 sinα cos α
= `sin^{2}α` + `cos^{2}α` + `sin^{2}α` = 3 sinα cos α
= `2 sin^{2}α` - 3sinα cos α + `cos^{2}α` = 0
= (2sinα -cos α)( sinα- cosα) =0
∴ cotα = 2 or cotα = 1
0 Comments