
Explanation:
= `\frac{cot y^{0}}{cot x^{0}} = \frac{\frac{1}{tan y^{0}}}{\frac{1}{tan x^{0}}`
= `\frac{1}{tan y^{0}}\times\frac{tan x^{0}}{1}`
= `\frac{tan x^{0}}{tan y^{0}}`
Now,
(1) `tan x^{0}`
= `tan x^{0}` = `frac{CD}{AC}` = `frac{a}{AC}`
(2) `tan x^{0}`
= `tan y^{0}` = `frac{CB}{AC}`
= `frac{a + a}{AC}`
= `frac{2a}{AC}`
then,
= `\frac{cot y^{0}}{cot x^{0}}=\frac{tan x^{0}}{tan y^{0}}`
= `\frac{\frac{a}{AC}}{\frac{2a}{AC}}`
= `"a"/"AC"\times"AC"/"2a"`
= `"a"/"2a"`
= `1/2`
0 تعليقات