If tan α + cot α = 2, then `tan^{20}a`+ `cot^{20}a`

If tan α + cot α = 2, then `tan^{20}a`+ `cot^{20}a` =

(a) 0

(b) 2

(c) 20

(d) `2^{20}`




(b) 2

Explanation:

tan α + cot α = 2

given,

α=45°

So, tan α = cot α = 1

= `tan^{20}a`+ `cot^{20}a`

= `1^{20}`+ `1^{20}`

= 1+1 = 2






Post a Comment

0 Comments